
Devliverable D2: A Prototype Implementation of

the Bounded Polyhedra Method

Stefan Bygde

December 21, 2011

1 Introduction and Motivation

In order to validate the methods developed in deliverable D1, we have made an
implementation of our bounded polyhedral method [1](from now on referred to
as BD) as well as the method it is built upon by Simon and King [5](from now
on referred to as SK). The motivation behind the implementation is to be able
to compare BD and SK and quantify the advantages of our proposed method
in a convincing manner.

2 The Static Analyser SWEET

SWEET (SWEdish Execution time Tool) is a prototype static analysis tool
developed at MDH [6]. The tool is mainly used for WCET analysis, but can
perform a number of various analyses such as program slicing, abstract interpre-
tation with various domains, reaching definitions etc. The tool analyses code in
an intermediate language called ALF [3]. ALF was designed specifically to be
used for program analysis and to be able be represent both source and object
code.

SWEET has recently incorporated abstract interpretation with the polyhe-
dral domain. The polyhedral domain uses the Parma Polyhedra Library (PPL),
an open-source library for creating and manipulating convex polyhedra [4]. This
domain makes it possible to perform classic polyhedral abstract interpretation
very much like the original method suggested in [2]. The maturity of the tool
and its support for various analyses and the flexibility of the Parma Polyhe-
dra Library makes it very suitable to implement and evaluate our methods by
implementing them into SWEET.

2.1 Implementation in SWEET

We have added two new domains to SWEET: the SK domain and the BD
domain. The SK domain runs Simon and King’s method as described in their
paper and the BD domain runs our bounded polyhedral method. In addition, it

1



is possible to run the two methods simultaneously to make comparison easier.
The widening placement, which is an integral part of the bounded polyhedral
method (see D1), can be set independently of which method is used. So in order
to use BD properly, one must be sure to select the correct widening placement.
If the analyses are run simultaneously, both have to use the same widening
placement.

2.2 Implementation Details

The implementation of the SK domain is fairly straightforward as the only
difference is in the handling of conditionals. As mentioned, PPL has a built-
in wrapping operation which is implemented exactly as in Simon and King’s
method. Since SWEET is object oriented and its abstract domains are imple-
mented as classes, this domain is implemented as a subclass of the classical
polyhedral domain, overriding the behaviour of applying constraints (that is,
handling conditionals).

The implementation of the BD domain inherits from the SK domain and it
additionally overrides the behaviour of creating polyhedra, projecting variables
and widening. The implementation features things like computing the range
constraint for variables. The widening in BD uses limited widening (see D1),
which fortunately also is available as an operation in PPL.

2.3 Challenges and Obstacles

The theoretical model used in D1, on which SK and BD are built, is not the
same model as SWEET uses. This has led to a few practical issues.

2.3.1 Signedness Information

Both SK and BD assume that all variables have a fixed size and a fixed signed-
ness. However, SWEET operates on the intermediate representation ALF. This
format stores program variables in memory frames. Frames can be accessed in
arbitrary ways and there is no fixed interpretation of the data in the frames (i.e.,
it is not stored as signed or unsigned). Our temporary solution to this problem
is to manually provide information of the interpretation of the variables in the
program to be analysed. In the future we plan to do a pre-analysis to find out
how the different variables are used (i.e., if they are used as signed or unsigned
in the operations).

2.3.2 Separate Widening and Conditional Handling

As mentioned, a fundamental of BD is the placement of widenings, in particular
whether the widening should be done at conditional branches. SWEET operates
on CFGs rather than flow charts (as is used in D1). Conditionals and branches
are resolved at the end of a basic block and widening is performed either in the
beginning of a basic block or at the end of a basic block, just before the branching

2



is resolved. However, widening and computation of conditionals are separate
processes which do not by default “know” about each other. We solve this by
letting each bounded polyhedron “remember” the last linear constraint that was
applied to it. This means that when the widening occurs in the beginning of a
basic block, the last remembered constraint is available in the memory of the
widened polyhedron.

2.3.3 Placement Widening Points

BD does not dictate an exact placement of widenings, but requires that the
widenings should:

1. Be in conjunction with a conditional branch

2. Occur at least once per cycle in the CFG

SWEET does label an arc that goes from a basic block to a basic block which
is earlier in the CFG as a back edge. Thus, every cycle in a program has a back
edge in SWEET. A basic block does in most cases have multiple exits guarded
by a conditional. Our strategy is to give SWEET the option to place widening
points at the beginning of each basic block that has an outgoing back-edge. The
rationale behind this placement is that we have observed that the back-edge
itself is often an unconditional branch, , while we are interested in making the
widening in conjunction with a conditional branch. Thus, placing the widening
point in the beginning of the basic block containing the unconditional branch is
more likely to be conditional.

2.4 Evaluation and Future Work

The implementation can output a variety of statistics of the analysis results
(both final and intermediate results) to facilitate a comparison. If the analy-
ses are run simultaneously, the interrelationship between the derived polyhedra
can be measured (in inclusion relationship, number of constraints, number of
bounded variables etc.). Currently, we are working on measuring (i.e., counting)
the number of integer points inside polyhedra, as we believe that this will be
the most accurate measurement for comparing the methods.

3 References

References

[1] Stefan Bygde, Björn Lisper, and Niklas Holsti. Fully bounded polyhedral
analysis of integers with wrapping. In Proc. Int. Workshop on Numerical and
Symbolic Abstract Domains (NSAD 2011), Venice, Italy, September 2011.

3



[2] Patrick Cousot and Nicholas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Proc. 5th ACM Symposium on
Principles of Programming Languages, pages 84–97, 1978.

[3] Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sandberg, and
Linus Källberg. ALF – a language for WCET flow analysis. In Niklas Holsti,
editor, Proc. 9th International Workshop on Worst-Case Execution Time
Analysis (WCET’2009), pages 1–11, Dublin, Ireland, June 2009. OCG.

[4] The parma polyhedra library.
URL: http://bugseng.com/products/ppl, December 2011.

[5] Axel Simon and Andy King. Taming the wrapping of integer arithmetic.
In Hanne Riis Nielson and Gilberto Filé, editors, Proc. 14th International
Static Analysis Symposium, volume 4634 of Lecture Notes in Comput. Sci.,
pages 121–136, Kongens Lyngby, Denmark, 2007. Springer.

[6] SWEET execution time tool.
URL: http://www.mrtc.mdh.se/projects/wcet/sweet.html, December
2011.

4


